3.1.53 \(\int \frac {a+b \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx\) [53]

3.1.53.1 Optimal result
3.1.53.2 Mathematica [C] (verified)
3.1.53.3 Rubi [A] (verified)
3.1.53.4 Maple [A] (verified)
3.1.53.5 Fricas [B] (verification not implemented)
3.1.53.6 Sympy [F]
3.1.53.7 Maxima [F(-2)]
3.1.53.8 Giac [F]
3.1.53.9 Mupad [B] (verification not implemented)

3.1.53.1 Optimal result

Integrand size = 23, antiderivative size = 208 \[ \int \frac {a+b \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx=\frac {(a+b) \arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d \sqrt {e}}-\frac {(a+b) \arctan \left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d \sqrt {e}}+\frac {(a-b) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d \sqrt {e}}-\frac {(a-b) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d \sqrt {e}} \]

output
1/2*(a+b)*arctan(1-2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))/d*2^(1/2)/e^(1/2) 
-1/2*(a+b)*arctan(1+2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))/d*2^(1/2)/e^(1/2 
)+1/4*(a-b)*ln(e^(1/2)+cot(d*x+c)*e^(1/2)-2^(1/2)*(e*cot(d*x+c))^(1/2))/d* 
2^(1/2)/e^(1/2)-1/4*(a-b)*ln(e^(1/2)+cot(d*x+c)*e^(1/2)+2^(1/2)*(e*cot(d*x 
+c))^(1/2))/d*2^(1/2)/e^(1/2)
 
3.1.53.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.24 (sec) , antiderivative size = 166, normalized size of antiderivative = 0.80 \[ \int \frac {a+b \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx=\frac {3 \sqrt {2} b \left (-2 \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )+2 \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )-\log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )+\log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )\right )+8 a \operatorname {Hypergeometric2F1}\left (\frac {3}{4},1,\frac {7}{4},-\tan ^2(c+d x)\right ) \tan ^{\frac {3}{2}}(c+d x)}{12 d \sqrt {e \cot (c+d x)} \sqrt {\tan (c+d x)}} \]

input
Integrate[(a + b*Cot[c + d*x])/Sqrt[e*Cot[c + d*x]],x]
 
output
(3*Sqrt[2]*b*(-2*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] + 2*ArcTan[1 + Sqr 
t[2]*Sqrt[Tan[c + d*x]]] - Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d* 
x]] + Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]) + 8*a*Hypergeome 
tric2F1[3/4, 1, 7/4, -Tan[c + d*x]^2]*Tan[c + d*x]^(3/2))/(12*d*Sqrt[e*Cot 
[c + d*x]]*Sqrt[Tan[c + d*x]])
 
3.1.53.3 Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 197, normalized size of antiderivative = 0.95, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {3042, 4017, 25, 1482, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a-b \tan \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {2 \int -\frac {a e+b \cot (c+d x) e}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {2 \int \frac {a e+b \cot (c+d x) e}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}}{d}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a-b) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}-\frac {1}{2} (a+b) \int \frac {\cot (c+d x) e+e}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}\right )}{d}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a-b) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}-\frac {1}{2} (a+b) \left (\frac {1}{2} \int \frac {1}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}+\frac {1}{2} \int \frac {1}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}\right )\right )}{d}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a-b) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}-\frac {1}{2} (a+b) \left (\frac {\int \frac {1}{-e \cot (c+d x)-1}d\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}-\frac {\int \frac {1}{-e \cot (c+d x)-1}d\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a-b) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}-\frac {1}{2} (a+b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a-b) \left (-\frac {\int -\frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}\right )-\frac {1}{2} (a+b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a-b) \left (\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}\right )-\frac {1}{2} (a+b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a-b) \left (\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int \frac {\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {e}}\right )-\frac {1}{2} (a+b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a+b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )-\frac {1}{2} (a-b) \left (\frac {\log \left (e \cot (c+d x)+\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (e \cot (c+d x)-\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d}\)

input
Int[(a + b*Cot[c + d*x])/Sqrt[e*Cot[c + d*x]],x]
 
output
(2*(-1/2*((a + b)*(-(ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]]/(S 
qrt[2]*Sqrt[e])) + ArcTan[1 + (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]]/(Sqr 
t[2]*Sqrt[e]))) - ((a - b)*(-1/2*Log[e + e*Cot[c + d*x] - Sqrt[2]*Sqrt[e]* 
Sqrt[e*Cot[c + d*x]]]/(Sqrt[2]*Sqrt[e]) + Log[e + e*Cot[c + d*x] + Sqrt[2] 
*Sqrt[e]*Sqrt[e*Cot[c + d*x]]]/(2*Sqrt[2]*Sqrt[e])))/2))/d
 

3.1.53.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 
3.1.53.4 Maple [A] (verified)

Time = 0.06 (sec) , antiderivative size = 273, normalized size of antiderivative = 1.31

method result size
derivativedivides \(\frac {-\frac {a \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 e}-\frac {b \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 \left (e^{2}\right )^{\frac {1}{4}}}}{d}\) \(273\)
default \(\frac {-\frac {a \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 e}-\frac {b \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 \left (e^{2}\right )^{\frac {1}{4}}}}{d}\) \(273\)
parts \(-\frac {a \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 d e}-\frac {b \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 d \left (e^{2}\right )^{\frac {1}{4}}}\) \(275\)

input
int((a+b*cot(d*x+c))/(e*cot(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
1/d*(-1/4*a/e*(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x 
+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^( 
1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/ 
2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1))-1/4*b/(e^2)^( 
1/4)*2^(1/2)*(ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e 
^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1 
/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/ 
2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)))
 
3.1.53.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 721 vs. \(2 (161) = 322\).

Time = 0.27 (sec) , antiderivative size = 721, normalized size of antiderivative = 3.47 \[ \int \frac {a+b \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx=\frac {1}{2} \, \sqrt {-\frac {d^{2} e \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} + 2 \, a b}{d^{2} e}} \log \left (-{\left (a^{4} - b^{4}\right )} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} + {\left (b d^{3} e^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} + {\left (a^{3} - a b^{2}\right )} d e\right )} \sqrt {-\frac {d^{2} e \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} + 2 \, a b}{d^{2} e}}\right ) - \frac {1}{2} \, \sqrt {-\frac {d^{2} e \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} + 2 \, a b}{d^{2} e}} \log \left (-{\left (a^{4} - b^{4}\right )} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} - {\left (b d^{3} e^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} + {\left (a^{3} - a b^{2}\right )} d e\right )} \sqrt {-\frac {d^{2} e \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} + 2 \, a b}{d^{2} e}}\right ) - \frac {1}{2} \, \sqrt {\frac {d^{2} e \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} - 2 \, a b}{d^{2} e}} \log \left (-{\left (a^{4} - b^{4}\right )} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} + {\left (b d^{3} e^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} - {\left (a^{3} - a b^{2}\right )} d e\right )} \sqrt {\frac {d^{2} e \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} - 2 \, a b}{d^{2} e}}\right ) + \frac {1}{2} \, \sqrt {\frac {d^{2} e \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} - 2 \, a b}{d^{2} e}} \log \left (-{\left (a^{4} - b^{4}\right )} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} - {\left (b d^{3} e^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} - {\left (a^{3} - a b^{2}\right )} d e\right )} \sqrt {\frac {d^{2} e \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} - 2 \, a b}{d^{2} e}}\right ) \]

input
integrate((a+b*cot(d*x+c))/(e*cot(d*x+c))^(1/2),x, algorithm="fricas")
 
output
1/2*sqrt(-(d^2*e*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^2)) + 2*a*b)/(d^2*e) 
)*log(-(a^4 - b^4)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)) + (b*d^ 
3*e^2*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^2)) + (a^3 - a*b^2)*d*e)*sqrt(- 
(d^2*e*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^2)) + 2*a*b)/(d^2*e))) - 1/2*s 
qrt(-(d^2*e*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^2)) + 2*a*b)/(d^2*e))*log 
(-(a^4 - b^4)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)) - (b*d^3*e^2 
*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^2)) + (a^3 - a*b^2)*d*e)*sqrt(-(d^2* 
e*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^2)) + 2*a*b)/(d^2*e))) - 1/2*sqrt(( 
d^2*e*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^2)) - 2*a*b)/(d^2*e))*log(-(a^4 
 - b^4)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)) + (b*d^3*e^2*sqrt( 
-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^2)) - (a^3 - a*b^2)*d*e)*sqrt((d^2*e*sqrt( 
-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^2)) - 2*a*b)/(d^2*e))) + 1/2*sqrt((d^2*e*s 
qrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^2)) - 2*a*b)/(d^2*e))*log(-(a^4 - b^4) 
*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)) - (b*d^3*e^2*sqrt(-(a^4 - 
 2*a^2*b^2 + b^4)/(d^4*e^2)) - (a^3 - a*b^2)*d*e)*sqrt((d^2*e*sqrt(-(a^4 - 
 2*a^2*b^2 + b^4)/(d^4*e^2)) - 2*a*b)/(d^2*e)))
 
3.1.53.6 Sympy [F]

\[ \int \frac {a+b \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx=\int \frac {a + b \cot {\left (c + d x \right )}}{\sqrt {e \cot {\left (c + d x \right )}}}\, dx \]

input
integrate((a+b*cot(d*x+c))/(e*cot(d*x+c))**(1/2),x)
 
output
Integral((a + b*cot(c + d*x))/sqrt(e*cot(c + d*x)), x)
 
3.1.53.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx=\text {Exception raised: ValueError} \]

input
integrate((a+b*cot(d*x+c))/(e*cot(d*x+c))^(1/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.1.53.8 Giac [F]

\[ \int \frac {a+b \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx=\int { \frac {b \cot \left (d x + c\right ) + a}{\sqrt {e \cot \left (d x + c\right )}} \,d x } \]

input
integrate((a+b*cot(d*x+c))/(e*cot(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate((b*cot(d*x + c) + a)/sqrt(e*cot(d*x + c)), x)
 
3.1.53.9 Mupad [B] (verification not implemented)

Time = 13.20 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.57 \[ \int \frac {a+b \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx=\frac {{\left (-1\right )}^{1/4}\,b\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )}{d\,\sqrt {e}}-\frac {{\left (-1\right )}^{1/4}\,b\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )}{d\,\sqrt {e}}+\frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,1{}\mathrm {i}}{d\,\sqrt {e}}+\frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,1{}\mathrm {i}}{d\,\sqrt {e}} \]

input
int((a + b*cot(c + d*x))/(e*cot(c + d*x))^(1/2),x)
 
output
((-1)^(1/4)*a*atan(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2))*1i)/(d*e^( 
1/2)) + ((-1)^(1/4)*a*atanh(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2))*1 
i)/(d*e^(1/2)) - ((-1)^(1/4)*b*atan(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^ 
(1/2)))/(d*e^(1/2)) + ((-1)^(1/4)*b*atanh(((-1)^(1/4)*(e*cot(c + d*x))^(1/ 
2))/e^(1/2)))/(d*e^(1/2))